AMD Ryzen 5000G APUs: OEM Only For Now, Full Release Later This Year
by Dr. Ian Cutress on April 13, 2021 10:15 AM ESTWith the high demand for semiconductors causing most companies to focus on their high margin, high profitability components, I wasn’t expecting to see many launches of low-to-mid range hardware for the rest of 2021. AMD has surprised me in announcing its entry and mid-level processors with integrated graphics today, offering up to eight Zen 3 cores and Vega 8 graphics, but AMD is pointing out that these models are for the pre-built system market only right now. AMD has plans to enable a full retail offering for these components, but this will happen later in the year.
Ryzen 5000 Gets a G
AMD’s processors with integrated graphics onboard, known as APUs, have easily identifiable product names because they all end in a G, for graphics I presume. AMD has launched several generations of APUs built upon its Ryzen architecture:
- Ryzen 2000G (Raven Ridge), built on 14nm Zen with Vega 11
- Ryzen 3000G (Picasso), built on 12nm Zen+ with Vega 11
- Ryzen 4000G (Renoir), built on 7nm Zen 2 with Vega 8
- Ryzen 5000G (Cezanne), built on 7nm Zen 3 with Vega 8
Both 2000G and 3000G offered parts at retail, however we never saw a formal retail launch of Ryzen 4000G. This product line was focused for the pre-built market, especially for business ‘PRO’ use. We ended up obtaining three of the APUs in this market, and put them to the test.
Testing The World’s Best APUs: Desktop AMD Ryzen 4750G, 4650G and 4350G
Today the Ryzen 5000G series comes out to play, again for pre-built systems, but AMD is this time making clear that it will also come to retail for regular systems and gaming systems. These new Ryzen 5000G APUs are built on TSMC’s 7nm process, and will feature eight Zen 3 cores with Vega 8 graphics. All CPUs will also have 24 lanes of PCIe 3.0 and support DDR4-3200.
AMD Ryzen 5000G Series APUs | |||||||
AnandTech | Core / Thread |
Base Freq |
Turbo Freq |
GPU CUs |
GPU Freq |
PCIe * |
TDP |
Ryzen 5000G | |||||||
Ryzen 7 5700G | 8 / 16 | 3800 | 4600 | 8 | 2000 | 16+4+4 | 65 W |
Ryzen 7 5700GE | 8 / 16 | 3200 | 4600 | 8 | 2000 | 16+4+4 | 35 W |
Ryzen 5 5600G | 6 / 12 | 3900 | 4400 | 7 | 1900 | 16+4+4 | 65 W |
Ryzen 5 5600GE | 6 / 12 | 3400 | 4400 | 7 | 1900 | 16+4+4 | 35 W |
Ryzen 3 5300G | 4 / 8 | 4000 | 4200 | 6 | 1700 | 16+4+4 | 65 W |
Ryzen 3 5300GE | 4 / 8 | 3600 | 4200 | 6 | 1700 | 16+4+4 | 35 W |
Ryzen 4000G | |||||||
Ryzen 7 4700G | 8 / 16 | 3600 | 4400 | 8 | 2100 | 16+4+4 | 65 W |
Ryzen 7 4700GE | 8 / 16 | 3100 | 4300 | 8 | 2000 | 16+4+4 | 35 W |
Ryzen 5 4600G | 6 / 12 | 3700 | 4200 | 7 | 1900 | 16+4+4 | 65 W |
Ryzen 5 4600GE | 6 / 12 | 3300 | 4200 | 7 | 1900 | 16+4+4 | 35 W |
Ryzen 3 4300G | 4 / 8 | 3800 | 4000 | 6 | 1700 | 16+4+4 | 65 W |
Ryzen 3 4300GE | 4 / 8 | 3500 | 4000 | 6 | 1700 | 16+4+4 | 35 W |
*PCIe lanes on the SoC are listed in GFX+Chipset+Storage |
AMD has had several products with Zen 3, including the regular Ryzen 5000 and EPYC 7003 processor lineups, and 5000G will take on the same feature set. This means that AMD will deal with 8-core CCX designs with a unified L3 cache across all the cores within a CCX. While the Ryzen and EPYC processors offer 32 MB of L3 cache for eight cores, the Ryzen 5000G will have 16 MB of L3, but each core will access to the full 16 MB. The Ryzen 5000G series remains a monolithic design.
Users might be disheartened to hear that this is another APU with Vega 8 graphics. AMD made it clear that the jump from 12nm to 7nm gave them a lot of extra frequency, from 1400 MHz to 2100 MHz, which enabled them to optimize for 8 compute units of Vega on 7nm, rather than the 11 compute units on 12nm, and still give a substantial speed-up in performance. AMD’s philosophy with the APU line has been to mix and match what is needed on the product at the right time, and enabling RDNA/RDNA2 on an APU at the same time as changing the CPU core might be a couple of steps too much with a new product. However it is what it is, and the increased L3 cache range for the cores will have a direct knock-on to graphics performance.
The top processor is the Ryzen 7 5700G, built with eight Zen 3 cores, offering a base frequency of 3.8 GHz and a peak turbo of 4.6 GHz. The whole chip has a 65 W TDP, which based on AMD’s socket specifications, means that 88 W is likely to be observed in retail configurations. The Ryzen 5 5600G is a similar design, but with six cores and slightly lower frequencies. The Ryzen 5 5300G is slightly different in that it has only 4 cores, and AMD has cut the L3 cache to 8 MB.
Each of the 5000G processors will have 5000GE counterparts targeting 35 W TDP. This TDP change is reflected in the lower base frequencies and likely a lower sustained power.
These processors have already been spotted inside new Dell pre-built gaming systems. At a time when discrete graphics are hard to come by, and we’ve seen pre-built systems being sold without graphics cards, an injection of APUs might help fill the void. However, APUs might end up going up in price as a result – perhaps why AMD wants to keep them in an OEM configuration for now.
Exact SEP (retail pricing) and retail release dates were not disclosed.
Retail Systems
HP Germany has a system listed, the Omen 25L Desktop GT12-1300ng. Ryzen 7 5700G with an NVIDIA RTX 3060 Ti, which makes us wonder what the APU part of the processor is being used for.
Comparing to Desktop CPUs
We've been asked to showcase the difference between the CPUs and APUs.
AMD Ryzen 5600 Variants | ||||||||
AnandTech | Core / Thread |
Base Freq |
Turbo Freq |
GPU CUs |
GPU Freq |
PCIe |
L3 MB |
TDP |
Ryzen 5000G | ||||||||
Ryzen 5 5600X | 6 / 12 | 3700 | 4600 | - | - | 4.0 x24 | 32 | 65 W |
Ryzen 5 5600G | 6 / 12 | 3900 | 4400 | 7 | 1900 | 3.0 x24 | 16 | 65 W |
If we put side by side the Ryzen 5 5600X, the CPU, with Ryzen 5 5600G, we see a lot of similarities. Both have six cores and 12 threads, both run at 65 W, and both have 24 PCIe lanes.
However, there are a number of differences as well. The 5600X CPU has an extra +200 MHz on the turbo frequency, whereas the 5600G APU has +200 on the base frequency and it also has integrated graphics. On top of this, the CPU has PCIe 4.0 rather than PCIe 3.0, and the CPU has double the cache. If we go up to the 8-core parts, then that disparity changes a little.
AMD Ryzen 7 5000 Variants | ||||||||
AnandTech | Core / Thread |
Base Freq |
Turbo Freq |
GPU CUs |
GPU Freq |
PCIe |
L3 MB |
TDP |
Ryzen 5000G | ||||||||
Ryzen 7 5800X | 8 / 16 | 3800 | 4700 | - | - | 4.0 x24 | 32 | 105 W |
Ryzen 7 5700G | 8 / 16 | 3800 | 4600 | 8 | 2000 | 3.0 x24 | 16 | 65 W |
For this comparison, there is no base frequency difference, but the turbo is higher on the CPU. The APU still has the integrated graphics, but is only PCIe 3.0 off the processor and not PCIe 4.0 like the CPU. We still have the cache difference.
So the question is which would you rather have - 100-200 MHz extra CPU frequency, double the L3 cache, and PCIe 4.0, or would you rather have integrated graphics? Interesting times ahead.
Chipset Support
AMD has confirmed that X570, B550, and A520 motherboards will support the new 5000G processors. X470 and B450 motherboards might also be supported, but that depends on the motherboard manufacturer. At this time, for anyone lucky enough to get one on the open market, special Beta BIOSes will be needed to enable full performance.
Ryzen 9 5900 and Ryzen 7 5800: New CPUs also OEM Only
Aside from the official APU announcement, two more processors appeared on AMD's list of parts. The Ryzen 9 5900 and Ryzen 7 5800, both without X at the end, are equivalent 65 W parts but set for the OEM market as well. At this time, AMD has not stated if these processors will ever come to retail.
AMD Ryzen 5000 Series Processors Zen 3 Microarchitecture |
|||||||||
AnandTech | Core/ Thread |
Base Freq |
1T Freq |
L3 C$ |
IGP | PCIe | TDP | SEP | |
Ryzen 9 5950X | 16 | 32 | 3400 | 4900 | 64 MB | - | 4.0 | 105 W | $799 |
Ryzen 9 5900X | 12 | 24 | 3700 | 4800 | 64 MB | - | 4.0 | 105 W | $549 |
Ryzen 9 5900 | 12 | 24 | 3000 | 4700 | 64 MB | - | 4.0 | 65 W | OEM |
Ryzen 7 5800X | 8 | 16 | 3800 | 4700 | 32 MB | - | 4.0 | 105 W | $449 |
Ryzen 7 5800 | 8 | 16 | 3400 | 4600 | 32 MB | - | 4.0 | 65 W | OEM |
Ryzen 7 5700G | 8 | 16 | 3800 | 4600 | 16 MB | Vega8 | 3.0 | 65 W | OEM |
Ryzen 7 5700GE | 8 | 16 | 3200 | 4600 | 16 MB | Vega8 | 3.0 | 35 W | OEM |
Ryzen 5 5600X | 6 | 12 | 3700 | 4600 | 32 MB | - | 4.0 | 65 W | $299* |
Ryzen 5 5600G | 6 | 12 | 3900 | 4400 | 16 MB | Vega7 | 3.0 | 65 W | OEM |
Ryzen 5 5600GE | 6 | 12 | 3400 | 4400 | 16 MB | Vega7 | 3.0 | 35 W | OEM |
Ryzen 3 5300G | 4 | 8 | 4000 | 4200 | 8 MB | Vega6 | 3.0 | 65 W | OEM |
Ryzen 3 5300GE | 4 | 8 | 3600 | 4200 | 8 MB | Vega6 | 3.0 | 35 W | OEM |
AMD now has 12 processors in its Ryzen 5000 series family. Eight of them are for pre-built OEM systems only, and four are on retail shelves.
67 Comments
View All Comments
dwillmore - Tuesday, April 13, 2021 - link
Much better, thank you.IBM760XL - Tuesday, April 13, 2021 - link
The Ryzen 7 5800X is a 105W TDP (source: https://www.amd.com/en/products/cpu/amd-ryzen-7-58... not 65W as stated in the table in the article.Thus the 5700G looks pretty interesting. I'd been disappointed that the 5800 Non-X was not available at retail as a lower-power part, but the 5700G might fill that roll. It has the clocks of the X (and the iGPU), but loses half the L3 and the PCIe 4.0. I'll be interested to see how it compares in real-world performance. Personally I probably would be fine with PCIe 3.0, but am curious how the cache differences will play out.
phatboye - Tuesday, April 13, 2021 - link
So AMD has enough silicone to supply dozens of OEMs a low end 5000G APU, OEMs but can't find enough chips to get me one 5950X that I've been waiting since November, 2020 to purchase?Gigaplex - Tuesday, April 13, 2021 - link
A 5950X requires much better binning than a low end APU.lmcd - Tuesday, April 13, 2021 - link
That 5600G looks like the right part. I wonder if switchable graphics with Nvidia on desktop still works!dsplover - Tuesday, April 13, 2021 - link
Great news even though I’m covered with my i7’s.5700G is an upgrade for me and not being a gamer my meager 2D needs will be covered.
Maybe a Tiger Lake Desktop before then but if there’s no “leak” of one after this announcement I won’t hold my breath.
Never thought I’d leave Intel but they’re the ones who left me with their endless 14nm added core chase game. Too damn hot for me.
trivik12 - Tuesday, April 13, 2021 - link
I am interested in AMD's earnings call. I expect Gross Margin to be excellent as they are selling more of premium products but overall revenue growth will be hit if low to medium parts volume is not there. Chip Shortage is a terrible thing. Plus drought in Taiwan makes it terrible when we hear water is being diverted to TSMC fabs. I hope TSMC gets their US plant up soon.Would we ever see Intel making AMD parts :-)
Gigaplex - Tuesday, April 13, 2021 - link
"Would we ever see Intel making AMD parts :-)"We've seen an Intel CPU with AMD graphics built in to it.
Oxford Guy - Tuesday, April 13, 2021 - link
'AMD made it clear that the jump from 12nm to 7nm gave them a lot of extra frequency, from 1400 MHz to 2100 MHz, which enabled them to optimize for 8 compute units of Vega on 7nm, rather than the 11 compute units on 12nm, and still give a substantial speed-up in performance. AMD’s philosophy with the APU line has been to'give you as little as possible for your money. They want small dies which is why they cut down the parts and then clock them high. It's only efficient for their yields/margin. Radeon VII was a bad card for the same reason. Few transistors but high clocks.
Corporations are greedy by design so that's what's at the heart of their 'philosophy'.
Thunder 57 - Tuesday, April 13, 2021 - link
More yields means more products for the masses. You should be in favor of that.Yea, corporations exist to make money. They do so if they make a good product that people want to buy. Would you rather not have the opportunity to purchase one of these Zen CPU's?