The SandForce SF3000 series has become the unicorn of the SSD industry. For the past two years there has been a lot of hype about the new controller, but Seagate/SandForce has kept missing deadlines one after the other. Initially the third generation SandForce controller was supposed to ship in mid-2014, but obviously that didn't happen. Next we heard Q4'15, which was then changed to mid-2015 and the latest word I got at Computex is expected mass production in Q4'15, meaning that we could see first products shipping in early 2016. 

The SF3500 package is considerably smaller than the SF3700

The original paper launch back in late 2013 only included the SF3700 lineup, which was first supposed to cater all markets from entry-level client to enterprise. Last week Seagate announced that the SF3000 series has now been split into two: SF3500 for the client and SF3700 for the enterprise market. The reasoning behind the differentiation doesn't only lie in marketing as the SF3500 and SF3700 are separate dies with the SF3500 having four NAND channels whereas the SF3700 keeps the 9-channel design as announced previously. It makes a lot of sense to build a separate die for the client space and honestly I was a little skeptical about cost efficiency because it's practically impossible to build a silicon that is feature rich enough for the enterprise with a consumer friendly price tag. We've seen the client space moving towards 4-channel controller designs anyway, so I suspect introducing a smaller 4-channel controller was the only way SandForce could remain price competitive against Silicon Motion, which has taken a large share of SandForce's old clients. 

Seagate SandForce SF3000 Series Specifications
Series SF3500 SF3700
SKU SF3514 SF3504 SF3524 SF3739 SF3759
# of NAND Channels 4 (400MT/s each) 9 (400MT/s each)
Controller Frequency 275MHz 275MHz 300MHz N/A N/A
Interface SATA 6Gbps PCIe 2.0 x2 (NVMe) SATA 6Gbps + PCIe 2.0 x2 (NVMe) SATA 6Gbps + PCIe 2.0 x4 (NVMe)
Max Capacity 1TB 2TB
NAND Support MLC, TLC MLC, TLC SLC, eMLC, MLC, TLC
Sequential Read 550MB/s 900MB/s 900MB/s 1600MB/s 1600MB/s
Sequential Write 450MB/s 525MB/s 525MB/s 670MB/s 670MB/s
4KB Random Read 100K IOPS 130K IOPS 130K IOPS 130K IOPS 130K IOPS
4KB Random Write 80K IOPS 120K IOPS 120K IOPS 80K IOPS 80K IOPS
Mixed 70R/30W Random  80K IOPS 120K IOPS 120K IOPS 100K IOPS 100K IOPS
Encryption AES-256, TCG Opal 2.0 & IEEE-1667 (eDrive) AES-256 AES-256 & TCG Entrerprise

The SF3500 series includes three SKUs and similar to the SF3700 silicon the controller supports both SATA 6Gbps and PCIe 2.0 (although only two lanes, whereas the SF3700 features four). The SF3514 and SF3504 are SATA and PCIe respectively, but the SF3524 has a switch that allows it to operate in both SATA and PCIe modes similar to the SF3700 SKUs. Unfortunately the switch isn't user-accessible as it has to be toggled by the manufacturer, so it's merely a feature that helps the OEMs with inventory management. The SF3524, being the high-end model, also has more supported firmware features, but Seagate isn't disclosing any at this stage, although I was told they are more back-end related rather than concrete features that are visible to the end-user. 

Inherently the SF3500 is just a 4-channel version of the SF3700 and supports all SandForce technologies (DuraWrite, SHIELD, RAISE etc), but with one twist. The SF3500 is the first time SandForce is relying on external DRAM for caching the NAND mapping table, whereas the SF3700 and all older SandForce controllers only use the integrated SRAM. No user data is stored in the DRAM, so its function is purely to increase performance as well as reduce power up time when waking the system from sleep. 

Another separating feature is the RAISE support. Because the SF3500 is client-oriented, it only supports level-1 RAISE, which uses one NAND die for protection against single page/block failures (in small capacity drives fractional RAISE can be used as it requires less than a full die). The SF3700 has full RAISE support and can operate in either level 1 or 2 mode with level-2 protecting against a full die failure (the 9th channel is there for that reason). 

SandForce's focus in the SF3000 series has been mixed performance from day one. While most modern drives boast excellent peak read and write performance, nearly every drive experiences notable loss in performance under mixed read/write workloads. We've been testing mixed performance as a part of our 2015 Client SSD Suite and I certainly agree with SandForce that it's an area where improvement is needed, which is what the SF3000 series is promised to do. Seagate's/SandForce's internal tests put the SF3700 at much higher performance efficiency than the competing NVMe drive that Seagate couldn't officially disclose (hint: the manufacturer starts with an I). 

All in all, Seagate seems to be making progress with the SF3000 series. It's inevitably late from the original launch schedule, but on the other hand there are only a handful of client PCIe drives on the market right now, so if the new schedule sticks and the SF3000 is as good as Seagate is showing it to be, SandForce will definitely be back in the game. The Computex announcement was relatively high-level, but Seagate hinted that they will have a truckload of new details to share within the next two months, so we will stay tuned for more. 

Comments Locked

22 Comments

View All Comments

  • Kristian Vättö - Thursday, June 11, 2015 - link

    Only time will tell. It's not like anyone is going to admit that their product has issues months before it's going to ship.
  • Oxford Guy - Friday, June 12, 2015 - link

    Is the compression/deduplication stuff the same as the previous generation? If so, TRIM still won't work correctly.
  • kyuu - Thursday, June 11, 2015 - link

    Have a Sandforce drive still going strong. They certainly had their issues, but then so has just about everyone in the SSD space.
  • Oxford Guy - Friday, June 12, 2015 - link

    I'm happy for you. I've had five brick and gave up on using them.
  • canthearu - Wednesday, June 10, 2015 - link

    With these specs, Seagate are going to be eaten alive in the marketplace. People look at AS-SSD figures and then make up their mind.

    Samsung/Intel already have controllers performing better than this in released and available products.

    Making the consumer drives 4 channel only, limiting them to 1TB and now requiring DRAM as well, I can't see this as being a competitive solution for 2016/2017.

    It is sad, because the sandforce 2 controller really was quite good once they ironed out the bugs. It could have done with an iterative improvement rather than a redesign. Take a SF-2200 series controller, Improve in-compressible write speeds a bit, increase maximum drive size to 2TB, a bit more internal tuning, and it would still be a highly competitive controller today.
  • Impulses - Thursday, June 11, 2015 - link

    Ironing out the bags didn't exactly happen in a timely manner... Even Intel's version with their much ballyhooed validation ended up with critical bugs.
  • canthearu - Thursday, June 11, 2015 - link

    Nobody has clean hands in the SSD business though, so it would be unfair to the sandforce engineers if we didn't also level these sorts of criticism against Samsung, Indilinx, Intel and Crucial as well!
  • odoyle-rulez - Friday, June 19, 2015 - link

    No, it's fair to single out Sandforce. Once LSI acquired them, they swiftly lost market share to other companies. They will never regain their previous dominance. I also agree, they are months away from releasing a product that has already been passed by in the marketplace by a few competitors. Welcome to life in the small lane Sandforce. Get used to it.
  • danwat1234 - Wednesday, August 19, 2015 - link

    I wonder if it'll be a OCZ SSD that the Sandforce 3500 controller will be in first... Any month now, nearly September 2015!
  • danwat1234 - Monday, January 11, 2016 - link

    It's 2016. ... and still no Sandforce 3000 series SSDs... I am not surprised.

Log in

Don't have an account? Sign up now